

C16 K_{sp} Calculations Whiteboard

C16 K_{sp} Calculations

What is the solubility of silver chloride @25°C given the solubility constant of 1.6×10^{-10} .

Molar Concentrations or moles in 1 L

	AgCl(s)	\rightleftharpoons	Ag ⁺ (aq)	+	Cl ⁻ (aq)
Initial			0		0
Change	-s		+s		+s
Equilibrium					

$$K_{sp} = [\text{Ag}^+][\text{Cl}^-]$$

$$K_{sp} = 1.6 \times 10^{-10}$$

$$1.6 \times 10^{-10} = [\text{Ag}^+][\text{Cl}^-]$$

$$1.6 \times 10^{-10} = [s][s]$$

$$1.6 \times 10^{-10} = s^2$$

Concentration of Ag⁺(aq) @ equilibrium = $1.3 \times 10^{-5} M$

Concentration of Cl⁻(aq) @ equilibrium = $1.3 \times 10^{-5} M$

Amount of silver chloride that dissolves in 1.00 L of solution = 1.3×10^{-5} moles

$$1.3 \times 10^{-5} \text{ mol AgCl} \times \frac{143.34 \text{ g AgCl}}{1 \text{ mol AgCl}} = 0.0018 \text{ g AgCl}$$

Only 2 milligrams of silver chloride will dissolve in a full liter of water.