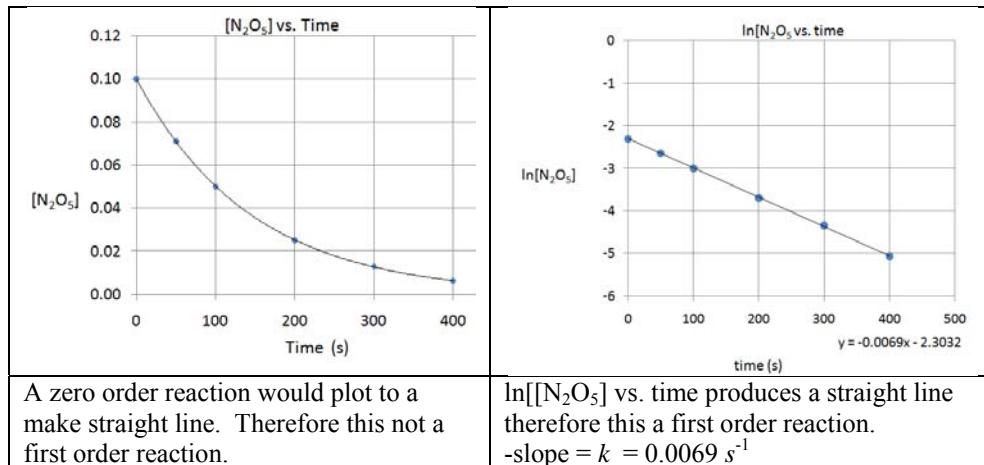


Rate Law Expression Proof

What is the order of this reaction?

Data

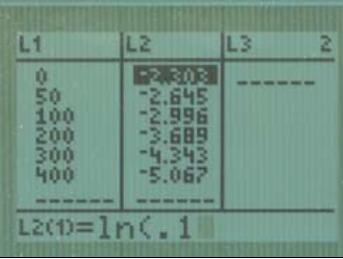
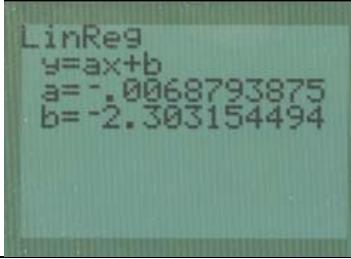
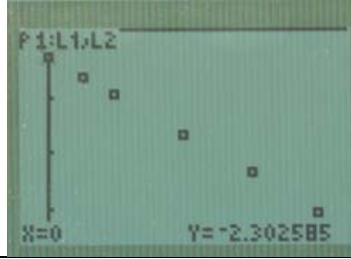

Note that Rod Lederer had typo'd the first two concentration data points.

[N ₂ O ₅] (M)	Time (s)
0.100	0
0.071	50
0.050	100
0.025	200
0.013	300
0.0063	400

Equations for zero order reactions are not on the AP Exam Equations and Constants sheets.

$$\text{Equation for first order reactions}^1 \quad \ln[A]_t = -kt + \ln[A]_0$$

Equations for second order reactions are on the AP Exam Equations and Constants sheets, but have never been used in any of the questions.




A faster easier method of proving that this is a first order reaction is noting that every 100 seconds the concentration is halved. Only a first order reaction has a constant half life time. Always be on the lookout for half concentrations.

Dividing the half life into 0.693, you will get rate constant for the reaction.

$$k = \frac{0.693}{t_{1/2}}$$

$$k = 0.0069 \text{ s}^{-1}$$

¹ $\ln[A]_t - \ln[A]_0 = -kt$ is the form of the equation found on the AP Equations sheet.

<p>[STAT] select EDIT [ENTER]</p> <p>You can enter the data in L1 and L2. Calculations are accepted for data input i.e. you can enter $\ln(\text{value})$ and the natural log will be calculated for you and be entered in that L location</p>	<p>[STAT] right arrow [CALC] down arrow [LinReg (ax+b)]</p> <p>The L1 and L2 data will be analyzed for the best fit straight line. The negative of the slope, a, will be the rate constant.</p> $k = 0.0069 \text{ s}^{-1}$ <p>Divided into $\ln(2)$, you will get the half life.</p> $t_{1/2} = \ln(2) \div 0.0069$ $t_{1/2} = 1.0 \times 10^2 \text{ s}$ <p>The concentrations halve each 100 seconds. A constant half life is also proof of a 1st order reaction.</p>	<p>With just PLOT 1 turned on [ZOOM] Scroll down to 9 Zoom Stat press [ZOOM] [9]</p> <p>You should see your L1 (x) L2(y) data plotted.</p> <p>With [TRACE] you can jump from point to point to check your data.</p> <p>the time vs. $\ln[\text{N}_2\text{O}_5]$ plots to a straight line which proves that this is a first order reaction with respect to the $[\text{N}_2\text{O}_5]$. Since this is the only reactant.</p> $\text{rate} = k [\text{N}_2\text{O}_5]^1$ $\text{rate} = (0.00689 \text{ s}^{-1}) [\text{N}_2\text{O}_5]^1$ <p>Given any concentration you could find the rate at that instant or given any rate you could find the concentration at that instant.</p>